

QSpace: The Theory of Why

A Testable Framework for Recursive Field Coherence (v2)

Author: August Neverman

Contact: august@neverman.org

Date: December 2025

1. Abstract

QSpace is a proposed geometric framework exploring whether a range of unresolved physical phenomena may arise from shared structural constraints rather than independent mechanisms. The framework examines how observable three-dimensional behavior could emerge as a projected expression of higher-dimensional field coherence, with information loss and recursion playing central roles.

Rather than replacing existing quantum or relativistic formalisms, QSpace offers an interpretive geometry intended to clarify persistent anomalies, including coherence loss, matter–antimatter asymmetry, and scale-dependent vacuum energy estimates. The approach introduces candidate geometric descriptors—such as projection angle and recursive tension—and investigates their potential observational consequences.

The framework emphasizes falsifiability through a large set of explicit, testable predictions spanning laboratory, astrophysical, and cosmological contexts. Formalizing the mathematics is a goal, with the current work focused on establishing structural hypotheses, logic, and identifying decisive experimental tests.

2. Core Constructs

QSpace introduces a small set of conceptual constructs intended to describe how coherence, recursion, and projection may interact to produce observable physical behavior. These constructs are not presented as fundamental particles or forces, but as descriptive elements within a geometric framework.

QP (Quanta Push)

Quanta Push (QP) denotes forward-directed coherence flow within the framework. It is used to represent propagation, phase advance, or directed expression through the projection structure, playing a role analogous to momentum or energy transport without assuming a specific field equation.

In this interpretation, electromagnetic radiation and other propagating phenomena are modeled as structured bundles of QP behavior, with stability determined by coherence alignment and projection conditions rather than by particle identity.

QC (Quanta Curl)

Quanta Curvature (QC), also referred to as **Quanta Recursion**, describes coherence that folds back on itself to form persistent, self-reinforcing structures. QC may be viewed as QP that has become partially or fully recursive, producing stable loops of coherence.

Within the framework, QC is used to model the emergence of properties commonly associated with matter, such as persistence, spin-like behavior, and phase locking. The degree of recursion determines structural stability rather than assuming intrinsic particle mass or charge.

QTensor Structures

QTensor structures refer to recursive, multi-pole coherence configurations formed from interacting QP and QC behaviors. These structures encode relative orientation, chirality, and alignment within the projection geometry.

QTensor structures are not introduced as new physical entities, but as a way to describe how coherence organization may give rise to consistent observational patterns across different scales.

θ_{proj} (Projection Angle)

The **projection angle (θ_{proj})** characterizes how a recursive coherence structure expresses into observable three-dimensional space. It is a geometric parameter describing the orientation between the coherence structure and the projection surface, influencing visibility, stability, and interaction strength.

4D Tensor structures that project successfully into 3D are observable as matter, fields or radiation, while those with misaligned projection angles may persist without fully resolving into detectable states. Similar notions of projection-dependent visibility appear in other higher-dimensional approaches, though QSpace treats this as a geometric expression effect rather than a brane-localization mechanism.

κ_0 (Projection Tension)

Projection tension (κ_0) describes the internal strain arising from misalignment between forward coherence flow and recursive structure. It functions as a bookkeeping concept for how coherence stability degrades, phases modulate, or structural transitions occur when projection conditions change.

Rather than postulating a new force, κ_0 is used to describe how geometric misalignment may contribute to coherence loss, large-scale expansion effects, or phase instability within the framework.

3. Higher-Dimensional Structure and Observable Space

QSpace explores the hypothesis that observable three-dimensional energy, fields and mass may arise as expressions of higher-dimensional coherence tensor structures. What is measured as position, motion, interaction, or persistence in 3D reflects only the subset of structure that survives projection into observable space.

Rather than treating the physical world as a three-dimensional domain embedded within higher dimensions, QSpace adopts a projection-based interpretation. Observable space is not a separate “zone” or brane, but a limited cross-section of more complete recursive structures whose full geometry is not directly accessible to measurement.

Within this framework, each location identified in 3D corresponds to an underlying coherence structure with additional degrees of freedom. The observable properties of matter, radiation, and interaction depend on how those structures align with shared projection conditions, not on their existence or nonexistence. Structures that fail to project favorably may persist without producing direct 3D signatures.

This approach treats three-dimensional space as **real and measurable**, but incomplete. The limitation is not spatial exclusion, but informational access: only certain aspects of higher-dimensional structure are retained when coherence resolves into observable form.

[Analogy] *A useful analogy is the projection of a complex object onto a lower-dimensional surface. When a higher-dimensional structure is illuminated or intersected by a projection surface, the resulting image captures only a subset of the original geometry. The projected image is real, measurable, and consistent — but it does not fully represent the underlying form. QSpace treats observable reality in a similar way: not as an illusion, but as a constrained expression shaped by projection geometry. What is observed corresponds to the visible surface of coherence rather than its full structure.*

4. Observation is Limited

Human observation / visual perception is constructed from two two-dimensional retinal images combined with motion, parallax, and learned inference. The result is an effective spatial experience that feels like *2D with depth cues* rather than true volumetric (3D) access. This can be informally be described as **2.5D observation**.

This limitation is not unique to human vision. Most of our measurement systems operate in similarly reduced forms. Cameras record 2D projections, spectrometers collapse structure into frequency traces, particle detectors register localized hits, and many sensors reduce complex interactions to single scalar values. Depth, structure, and dynamics are typically reconstructed indirectly rather than observed directly.

Within QSpace, this distinction matters because recursive or curved coherence structures may express along degrees of freedom that are weakly or not at all sampled by these observational channels. Structures that do not project cleanly into observable dimensions can persist without producing clear signatures, leading to apparent ambiguity or loss of information.

What is often described as uncertainty does not necessarily imply intrinsic indeterminacy.

5. 19 QSpace Working Hypotheses

- 1. QP and QC are not separate substances but phase behaviors of the same 4D tensor.** QP represents forward-phase coherence flow; QC represents recursive curvature of QP. They are dual expressions of the same entity under different dimensional alignment conditions.
- 2. Mass is proposed to emerge when QP (Quanta Push) collapses into QC (Quanta Curl) through recursive alignment, forming QPC (matter) or QCP (antimatter).** A multi-tensor QP structure that includes QC, expresses as matter (or anti-matter).
- 3. Dark energy is modeled as free-flowing 4D QP:** a non-resonant, non-recursive forward coherence phase. Within the framework, it does not express visibly except through large-scale effects on expansion and structure.
- 4. Dark Matter is modeled as pure QC structure—recursive curvature without sufficient projection to form visible matter.** It likely exists as coherence-bound bundles that express gravitationally but are not EM-interactive due to the absence of a QP rider.
- 5. The vacuum energy discrepancy (10^120 factor)** may reflect the QP field volumes distributed across the full 4D angular spectrum (1° to 90°), which can influence our 58.28° observation zone but cannot directly resonate or interact due to angular separation. Free QP in 4D may explain the missing vacuum energy.
- 6. The six QFD traits (Φ , A , \mathcal{R} , χ , τ , κ_0) potentially model all observable field structures.** Allowing for a geometric definition of: fields, particles, or structures in

QSpace. Each may be described by its values along six fundamental coherence traits:

- Φ – Forward coherence flow
- A – Amplitude
- \mathcal{R} – Recursive curvature
- χ – Chirality
- τ – Temporal recursion count
- κ_0 – Tensor alignment tension

This provides a possible alternative geometric description of properties such as charge, spin, and mass, rather than treating them as primitive inputs

7. **Quantum effects.** The theory proposes that (entanglement, interference, tunneling) arise from how coherence propagates across W , not discrete particles. **Entanglement** is hypothesized as a coherence-preserving connection across the W dimension—QP flowing across two tensor states across W , not spooky action but tensor flow.
8. **Observation is interference.** In QSpace, observation is theorized not a passive act, it is a physical interaction that disrupts coherence (think poking a bubble). What's traditionally called "wavefunction collapse" occurs not because a conscious observer looks but because a system crosses a coherence threshold due to interference, typically from another field, particle or environmental structure. Measurement is just a special case of this interference. Weak interactions may allow coherence to persist; strong ones trigger collapse.
9. **Directional effects** — such as chirality, spin bias, and neutrino updrift—are proposed to arise from projection of higher-dimensional tensor properties into 3D, with observable asymmetries determined by the relative orientation between a structure's intrinsic geometry and its projection angle.
10. **Projection categories determine visibility and measurement fidelity.** Whether a higher-dimensional structure expresses as observable matter, dark matter, field behavior, or remains undetected is proposed to depend on its projection angle (θ_{proj}) and its geometric alignment with local projection conditions. This projection geometry governs how coherence resolves into measurable form, determining visibility, stability, and measurement fidelity within 3D observation.

11. **Projection Thresholds and Discrete Phenomena**

QSpace proposes that discrete or banded phenomena can arise when higher-dimensional coherence structures cross specific projection or stability thresholds. As projection angle and coherence alignment vary, continuous structure in higher dimensions may resolve into quantized or band-limited outcomes in 3D observation—analogous to how continuous light separates into discrete colors when refracted.

Within this framework, a range of otherwise distinct phenomena are examined as potentially sharing a common geometric origin, where projection thresholds and coherence limits produce discrete observable states. Examples explored under this interpretation include:

- Tifft redshift banding
- Electron valence shell discretization
- Hadronic replication under energy stress
- Quantum Hall
- Photon Energy Bands in Double Slit
- Landau Levels in Strong Magnetic Fields
- LHC Jet Fragments and Resonant Hadron States (explained as QSpace projection bands)

12. Cosmic expansion is treated in QSpace as observationally real, but potentially geometric in origin. The framework explores whether the observed recession of galaxies may reflect how recursive higher-dimensional coherence structures express through three-dimensional projection, rather than requiring space itself to be dynamically expanding at the fundamental level.

Deeper recursive structure in 4D may correspond to increasing apparent separation between projected endpoints in 3D. What is measured as large-scale expansion could therefore potentially represent the visible stretching of recursive coherence geometry as viewed through a constrained projection angle, rather than the creation of new spatial volume.

13. The transition from higher-dimensional coherence to observable three-dimensional behavior is modeled in QSpace as a reduction in accessible degrees of freedom rather than a loss of structure.

In the full coherence framework, QP and QC tensors are proposed to express across multiple independent modes, including forward coherence flow, recursive curvature, alignment tension, and additional geometric relationships that do not

map cleanly onto three-dimensional observables. Collectively, these can be described as a higher-dimensional degree-of-freedom space.

When such structures express through 3D projection, only a limited subset of those modes remains directly observable. Observable systems are therefore constrained to three spatial dimensions and a reduced set of dynamical descriptors, producing a flattened and discretized representation of the original structure.

14. QSpace treats time as a measure of physical change rather than a substance that flows independently. Time advances when coherence evolves, folds, or reconfigures; in the absence of change, no meaningful passage of time is defined.

Within this framework, time is not a background dimension but an emergent descriptor tied to the rate and structure of coherence transformation. Systems that do not undergo internal change do not accumulate internal time.

This aligns with the behavior of light in standard physics: along a lightlike path, proper time is zero. In QSpace terms, a propagating coherence structure such as light remains phase-locked during propagation and only acquires time-relevant structure when interaction or collapse occurs.

Time, in this view, is not halted by observation or perception, but becomes undefined when coherence no longer supports internal change or recursion.

15. Gravity as Projected Recursive Curvature

Gravity is modeled in QSpace as a projected effect of recursive coherence curvature (QC), rather than as a fundamental interaction acting independently in three dimensions. In its native higher-dimensional form, gravitational behavior is proposed to follow a $1/r^3$ curvature structure.

When expressed through 4D→3D projection, this curvature appears as an inward-directed interaction obeying the familiar $1/r^2$ law observed in three-dimensional physics. Within QSpace, this projection reduction provides a geometric explanation for both the apparent weakness of gravity and several large-scale gravitational anomalies.

16. Projection-Locked Coherence as a Basis for Structure - QSpace proposes that stable structure emerges when recursive coherence becomes locked through projection. Across scales — from particles to planets, and from galaxies to baryon acoustic oscillation (BAO) shells — persistent forms arise when coherence crosses a projection threshold and stabilizes into measurable expression.

17. Magnetism and Recursive Coherence. In QSpace, magnetism is modeled as a coherence field associated with a tighter recursive alignment than gravity. When expressed through projection, this structure manifests as familiar field lines and dipole behavior.

The characteristic spatial decay of magnetic interactions suggests that magnetism may retain more direct access to higher-dimensional coherence than gravity, potentially reflecting a less projection-reduced expression rather than a fundamentally separate force.

6. QSpace SU(3) and SU(6) Overlap

QSpace proposes that recursive coherence structures organize into a layered spectrum based on projection fidelity rather than particle identity. Within this framework, QTensor states separate naturally into three broad expression classes depending on how fully recursive coherence survives projection into observable dimensions:

- **Fully projected coherence states**

A small set of QTensor configurations project cleanly and stably into 3D. These correspond to familiar, long-lived observable entities (such as photons, electrons, and neutrinos), where forward coherence (QP) and recursive curvature (QC) remain tightly aligned under projection.

- **Partially projected coherence states**

A much larger class of QTensor configurations retain recursion in higher dimensions but express only incompletely in 3D. These states may appear as transient resonances, field-like behaviors, interference effects, or delayed-collapse phenomena rather than as stable particles. Their partial visibility reflects projection loss rather than structural instability.

- **Non-projecting coherence states**

A small complementary set of QTensor configurations remains fully coherent in higher dimensions while failing to resolve into any direct 3D signature. These structures may correspond to pure recursive curvature states or coherence-bound aggregates that remain gravitationally or relationally influential without electromagnetic expression.

Taken together, this tripartite separation reflects a deeper coherence symmetry that can be represented as a $6 \times 6 \times 6$ organizational cube. This structure suggests that familiar SU(3)-like behaviors emerge as projected slices of a higher SU(6)-like coherence envelope, with projection fidelity determining which degrees of freedom remain observable.

A key consequence of this geometry is that **SU(n) – 1 behavior arises naturally**, not as an imposed constraint. In QSpace, recursive projection reaches a limit when curvature closes along the ZW axis. Once a coherence loop fully recurses, further independent projection degrees cannot be expressed. This “recursion horizon” removes one effective degree of freedom, producing the observed generator deficit without requiring an abstract gauge restriction.

From this perspective, aspects of the Standard Model particle structure may reflect projection-limited coherence degeneracies rather than fundamental particle multiplicity, with SU(3) symmetry emerging as a stable projected subset of a higher-dimensional coherence hierarchy.

7. Top Testable Predictions

The following predictions are selected for near-term experimental accessibility and clear falsifiability. Each proposes an observable deviation from standard expectations under controlled conditions. Failure to observe the predicted effect under the stated constraints would directly challenge the corresponding QSpace mechanism.

P1 — Rotating Laser Interference Shift

A rotating double-slit or interferometric laser apparatus exhibits a systematic fringe shift correlated with rotation angle. The effect is predicted to arise from changes in projection geometry (θ_{proj}), not from Doppler effects, mechanical deformation, or relativistic frame corrections.

Falsification condition: No rotation-correlated fringe displacement beyond known mechanical and inertial effects.

P2 — Phase Shift Near Small Mass

A dense mass placed near a coherent optical path induces a measurable phase shift without classical gravitational lensing or path deflection. The effect is attributed to local recursive coherence distortion rather than spacetime curvature gradients.

Falsification condition: Phase remains unchanged within experimental sensitivity when mass proximity varies.

P8 — Laser-Conductor Projection Coupling

A coherent laser field positioned near (but not electromagnetically coupled to) a current-carrying conductor produces a subtle change in DC resistance, with a reciprocal perturbation detectable in the laser’s coherence or phase stability.

Falsification condition: No measurable resistance or coherence change beyond thermal, EM, or vibrational noise.

P22 — Structured Slit Interference Modulation

Altering slit geometry, material composition, or magnetic properties produces reproducible changes in interference fringe structure. The slit acts not only as an aperture but as a local projection-shaping boundary.

Falsification condition: Fringe patterns depend only on aperture width and separation, independent of slit structure or material.

P24 — Coiled Tunnel Coherence Cascade

A laser propagated through a coiled or helically constrained optical path exhibits coherence length and visibility changes correlated with curvature and chirality of the path, beyond standard fiber or waveguide effects.

Falsification condition: No chirality- or curvature-dependent coherence change beyond known dispersion effects.

P25 — Funnel-Shaped Beam Modulation

A continuous laser passed through a spiral or funnel-shaped geometry transitions into a pulsed or quasi-discrete output pattern without external modulation, reflecting recursive coherence collapse thresholds.

Falsification condition: Output remains strictly continuous under all geometrical configurations.

P28 — Casimir Force Altitude Dependence

The Casimir force between parallel plates varies measurably with altitude, reflecting gravitationally mediated projection effects rather than a strictly invariant vacuum energy density.

Falsification condition: Casimir force remains altitude-independent within experimental uncertainty.

P48 — Asymmetric Coherence Gradients from Rotating Mass

A rotating mass produces anisotropic coherence gradients detectable as directional asymmetries in sensitive electromagnetic or interferometric detectors. This effect is not accounted for in standard GR frame-dragging predictions.

Falsification condition: No rotation-correlated asymmetry beyond GR-predicted effects.

P58 — Entanglement Correlation Drift

Entangled photon pairs exhibit reduced correlation strength when one photon traverses a

geometrically distorted or curved projection path, without environmental decoherence or loss.

Falsification condition: Correlation strength remains unchanged when decoherence sources are controlled.

8. Closing

QSpace is speculative. It is intended as a structurally coherent framework built around explicit assumptions and falsifiable predictions rather than as a finished theory. The emphasis throughout has been on internal consistency, geometric clarity, and identifying experimental conditions under which the framework could fail.

The work is incomplete, and that incompleteness is intentional. The author invites challenge, testing, and refinement, particularly from those willing to probe the predictions experimentally or formalize the mathematics more rigorously. Even partial validation or decisive falsification would be valuable.

If elements of the QSpace framework were to hold up under testing, they would suggest that familiar concepts—such as interaction, mass, energy, time, and measurement—may be better understood as consequences of geometric projection and coherence rather than as fundamental primitives. Whether this perspective proves useful remains an open question, and answering it requires empirical engagement.